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Abstract.  We consider a mode] Hamiltonian describing a rotor as fixed and weakly interacting
with a bath of oscillators. From the basic principles of statistical mechanics, we derive
the corresponding master equation for the rotor density matrix operator. Two relevant limit
regimes, imposed by the weak-coupling assumptions, are then examined in detail. The first
regime, corresponding to the classical Brownian limit, leads to the same electrical susceptibility
formulae as deduced from the well known Fokker-Planck-Kramers equation for the rotational
Brownian motion. The second regime appears as the Van Hove limit for the master equation
in the interaction picture, Based on the application of a mathematical theorem by E B Davies,
this limit provides an elegant Van Vieck—-Weisskopf lineform for the electrical susceptibility,
explicitly expressed for the model considered here.

1. Introduction

The study of the dielectric properties generated by the rotational motion of linear molecules
in non-polar media is an active field of work [1-6]. A close analysis of the vast literature
[7.8] concerning theoretical studies on the quantum rotational motion shows that there are
fundamental difficulties in the understanding of the problem. The main difficnlty is that
there are various aspects of the relation between commonly used phenomenological models
and microscopic dynamics that are not well understood. Moreover, existing theories based
on model Hamiltonians have not been carried far enough to clearly establish their relation
to phenomenological models.

In order to clarify the problem, in this work we consider the quantum model
Hamiltonians of a rigid fixed rotor interacting with a bath of harmonic oscillators.

From the basic principles of statistical mechanics we establish the weakly-coupled
master equation for the density matrix associated with the motion of the rotor. Some
authors have tackled this problem wsing projection operator technigues [9-11]. The rotor
possesses a permanent dipole moment along its axis interacting with an external applied
electric field. This model has already been treated by Lindenberg and West [2] in the
classical case. Instead of psing the master equation approach, they have established the
Langevin equations for the rotational motion of the rotor. In the limit regime, where the
random force created by the bath in the Langevin equations results from a white noise,
they have obtained the Fokker—Planck—Kramers (FPK} equation [1,2,4, 6, 12-14]. Identical
results have been recovered by the master equation approach with the effects of an applied
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6346 P Navez and M N Hounkonnou

electrical field included [15]. The white noise is a consequence of the fact that the dynamical
evolution of the bath is infinitely faster than that of the rotor and so is a characteristic of
the Brownian motion.

In the full quantum treatment, the bath creates a quantum noise which no longer
generates such an infinitely fast motion [11]. The correlation tirne of the bath is of the same
order of magnitude as the thermal correlation time oy = &/kpT (% is Planck’s constant, kg
the Boltzmann constant and 7 the absolute temperature). The weak-coupling assumption
imposes that this time must be much shorfer than the typical relaxation time associated
with the evolution of the rotor [11, 16]. This constraint restricts the validity of the master
equation to two limit regimes. The first regime comesponds to the classical Brownian limit
[17] discussed above. The second regime corresponds to the Van Hove limit [18-21] applied
to the master equation, describing the density matrix in the interaction picture. In this case,
we can apply a mathematical theorem by Davies which reduces the master equation in an
analytically tractable form [17,21,22].

The electrical susceptibility of the rotor can be calculated in the two limit regimes. In
the classical Brownian limit, this has been done in previous papers [12-14,23]. In the Van
Hove limit, the susceptibility is given by the Van Vleck—Weisskopf lineform expression
[8, 16], whose parameters are explicitly calculated from the model.

The paper is organized as follows. Section 2 deals with the theoretical framework from
which we establish the weak-coupling master equation. In section 3, we show how to derive
the expression for the linear dielectric susceptibility for the two limit regimes. Section 4
ends with the conclusions.

2. Theoretical framework

Let us consider a symmetric rigid rotor, fixed at its centre and free to rotate about this centre,
The rotor is in a bath of non-interacting harmonic oscillators that interact harmonically with
either end of the rotor. The centres of mass of the bath are spatially fixed. The rotor
possesses a permanent dipole moment susceptible to interact with an applied electric field.
In the quantum treatment, the Hilbert space associated with this model is the tensorial
product of the Hilbert space associated with the rotor system Hs and that associated with
the bath system Hp:

H =Hs @ Hg. (D
In this Hilbert space, the Hamiltonian operator associated with the model is written as [2]

Br = A + H:0) @
with

H=Hs+ A+ A @)

where the definitions are as follows,
(a) The rotor system Hamiltonian is

n 1o, B2/ 1 3 3, 1 @
Hs = EL =-37 (sinﬁ@smﬁg-l_ _sinzﬁ aaz)' 4)

I is the moment of inertia about the principal axes and L are the components of the angular
momentum operator. Its components can be expressed in terms of the azimuthal angle o
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and the polar angle 8 of the rotor, respectively referring to the fixed direction of an applied
field as polar axis:

f,= E sma—a— —cosa'cotﬁ 9 )
T f da
- h 3 9
Ly, = T (cosozﬁ —sing cot B oz)
o hoa
L,=~+—. 3
I da ©)

(k) The Hamiltonian of a set of three-dimensional oscillators is

Ay =) 1@+ ol@) =3 hoy(@f - &, + ). ©6)
v v

g, is the operator associated with the vth oscillator displacement from the eguilibrium
configuration, H, the associated conjugated momentum operator and o, the frequency
variable. The mass of the oscillators is taken to equal unity. In terms of the creation
and annihilation operators &, @,, the operators ¢, and $, can be written as

B O\V2 ,
gy = (2%) (@, +ah) 7
N (e, M N
bo=i(2*) @t -a ®
with the commutation relations:
(&, @] = 18,4 9

where 1 is the identity operator.
{c) The Hamiltonjan of the coupling between the bath and the rotor is

P}SB = Z Colly - . (10)
v
¢y is the coupling parameter between the oscillator v and one of the rotor ends.

i = (cos« sin B, sin« sin B, cos 8) (11)

i the unit vector oriented along the given end.
(d) The time-dependent Hamiltonian due to the applied electric field £(¢) is

Ag(t) = Va(t) = —pii, E@) = —ucos BE(r) (12)

where g is the dipole moment. The applied electric field is assumed to be along the z axis,
with the unit vector operator component &, [3,6, 14, 15].

Let us define 5(¢) as the probability density matrix operator defined at time ¢ in the
Hilbert space, H = Hs ® Hp. The normalization condition imposes the relation

it =ts@trg f(8) =1 (13)

where trg and trs denote the partial traces over a compiete set of orthonormal functxons in,
respectively, Hg and Hsg.
The Von-Neumann-Liouville equation for the density matrix operator is

aﬁcz) + (L +iLe@i@) =0 (14)
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where we used the Liouville operator’s commutation relations

s AN 1 TS - ~ i n ~

iL6@) = 1B, @] iLe®AG) = 2 [He(), A, (15)
By analogy, let us define

1

i&ﬂ0=ﬂmﬁm] (16)
i&mn=§mﬁm} 17
mwmn=§mmmm. (18)

In the following we will consider the canonical ensemble. In this case, when E(t) = G, the
equilibrium solution of the Von-Neumann-Liouville equation is

R . expl—(Hs + Hp + Hsp)1/ ks T
51) = 59 = pl—( s+ He fB)]/ BT (19)
tr{exp[—(Hs + Hp + Hsp)1/ ks T)
Qur aim is to describe the dynamics of the rotor moving under the influence of the
bath of oscillators. This is realized by deriving a generalized master equation [2,11] for the
reduced rotator density matrix operator

Ps(t) = g p(2). (20)

Carrying out the trace over the states of the bath in (19), in the weak-coupling limit, we
can neglect the term Hsp and deduce the comesponding reduced density matrix operator

e—Hs[kgT

Bs() — P = @

teg(e~F/haT)

The conditions of validity of this approximation will be established later.
To obtain the master equation, we define the projection operator P, the action of which
on the density matrix operator can be written as

Pp(z) = trg 5() @ Ay (22)
where

~eq e~ Ha/kaT

o e =

The corresponding complementary operator reads

-~ -

O=1-7. (24)

Such projection operators, not depending on the interaction Hsg, are used to derive the
master equationr, when we impose the initial condition

At =0) = ps(z = 0) ® o (23)

which also does not depend on the interaction operator ﬁsg. When I-}E(t) = 0, using the
assumption (25), the master equation in the weak-coupling limit is found to be in the form
[2,11,16]:

3 .4 . .
(5 - iﬁs) As(t) = Kps(t) (26)
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where
A +eo -A PR s N A -]
Kps(t) = trp [ f dt’ ifgpe b HI | o oilst 5u() @ ,agq}. @n
0

Let us recall here (see appendix A} that this result is identical to the more mathematically
complicated form [9]:

a A ~ - Ll o—1 ~
(35 -+ lﬁs) ps(t) + trplilsp XV E s ()]

+c0 PP o~ a h o,
= trp [: f dt’ iLgpe~rsHita) 50 £ 511 ethst ﬁs(r)]. (28)
Q0

5@ and £O are, respectively, the zeroth- and first-order term of the development in the
interaction Hgp of ¥ which, for any well defined operator A, is defined as

] ~
A _._1____ f ds e~ A/kaT Fa~Q-0)A/1T (29)
kT U'(C"H/kﬂr) o 7

I

351 is the inverse operator of £ defined as

1
kpT tis (eul;’s/kg ?')
The derivation of (28) assumes the following interaction-dependent initial condition:
Bt = 0) = Swp(E1 55 = 0)) (31)

and the use of different projection operators as the guantum analogue to the cormresponding
interaction-dependent classical projéction operators [9, 15].
The last term Kgs(t) in (26) can be handled by means of the following properties.

(i)

M

sA

1 . ’ R . .
f ds e—.‘i‘Hs/kBTAe—(l-S)Hs/kBT- (30)
0

e-(ifs+ifrs)rA" — e~ i Hs+Ha)t fof (Fs+Ha)t (32

(i1) In the spherical harmonics basis |I, m), we can decompose:
+00
@=> &+ (33)
where the components of 4t read

. | —m)l~—m-1 1/2
+ -
iy, = E H,m}{[ @+ D=1 :l {—1,m+1|

B (l+m)(l+m-—l):|”2(l_1 m_”]
[ @+ 1)L~ 1) ’

Lo {d—m){—m—-1) 1z
it = - —
iy, = E 2i[!, m}{ [ G+ DE =) :I ¢—1,m+1|

C+mi+m—-17"
+[ @A+ D<) } “'l’m_”}

r=~—{

me--i

i 12
S a+mw—mq ~
%-QZMmﬂﬁiﬁatﬁ {—1,m| (34)

m=—i
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and where
a7 = @&Hh (35)

(iii) The evolution of the dynamical operator % resulting from the free Hamiltonian A
is periodic and given at time 7 by

ir) = 5% = Ze’“’“u +eT gy (36)

where

" hl
T
are the transition frequencies.
{iv) The evolution of the dynamical operator §, resulting from the free Hamiltonian Ay

is given at time 7 by

(37)

sm(cu,,z’)ﬁu. 38)

& (v) = €537, = cos(w,1)§, +

v

(v} Using the statistical factor of Bose-Einstein
N{w) = [exp(hew/kgT) — 177! (39)
for the boson gas, we deduce

teg(@; awﬂgq) = N(wy) 16y v

4
tl'B(‘-"-'fw‘:l'u’.‘-:’]3. Y= trB(a'+a qu = 0. ( 0)

Then vsing (10), we carry out the partial trace over the bath. Furthermore, making an
integration by parts over t', equation (27} becomes

™ L[+ 6 NP Lra(—sh). 5
Kps@t) = -+ fo e’y — cos(eyt )[u-, (N (wy) + a1, fs(0)}

v

i [da(=t) .
»2-;;[ = ,psc:)H (d1)

- -«2m }j{nsm @), (V (o) + DI+ 87, fs()]

~ A A : l 1
~3[@" — 4y, s ] =1 [(wf — wu)p + (w, + ey )J

X[‘&-, (N{a) + DI — 47, ps)] — fm_ CHE ,ﬂs(t)1+] } 42)

The subscript p denotes the principal vaiue. The iast expression can be simplified if the
various modes of the oscillators are very close together in frequency. The sum ), in the
last expression is then replaced by an integral over the continuum:

oo )
L. daw,g(ey) 43)
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where the function g{w,) represents the spectral density of the oscillators. ¢, is replaced
by the functior c{w,). With these considerations defined, equation (26) becomes

i i~ . 2 glon)cP(w) =
E?PS(I) + E[H‘Ss PS({)] == ; {_m_i
—~PBs OB + N (@] s (1) — ps()a])]

+ee 2
. glwp)e* (@o)oy [A Inpad s A
+i [ o, o LAGICORP L)

(., (N {en) + 1) (8 Bs(2)

Wy . ~ - 7 i
o (& + 1y, Bs (t)]+:] } (44)
This expression follows an identical structure as the optical master equation derived in [11].

Let us consider the particular case when

v)
@p

7 glw)ci(w,) _ :
2 w? Wi+ w?

(45)

¢ is a friction constant which does not depend on the frequency w, and wp is a Debye
frequency giving the upper limit of the oscillators frequencies. The situation of equation
(45) takes place when c(e,) = ¢ does not depend on «w, and if the system of harmonic
oscillators is assimilated to a gas of phonons, with wave numbers distributed uniformly
inside a three-dimensional sphere whose radius is delimited by wp [24]. Therefore, before
w, has reached wp, the spectral density has the quadratic dependence form

2
3 5, wh

— 46
272 v} m”coé + w? (e

glw,) =
where v is the sound velocity and V the volume of the gas. Thus, with (43), we can carry
out the integral in (44) by transforming it into a contour integral and by determining that the
various poles inside the contour are £, + i07, iwp and 2winkg T /%, where n is a strictly
positive integer. We obtain the weakly-coupled master equation associated with the rotor:

8 sece l'ﬁ‘r]—- Ef @Bl T N 1-“”1: Be(t)ist
'é;ps( ) +?_¢[ 5. As(2) == 2 t., (N () + 1) ps(t) — pst)iy)
+ N () (& Ps () — ps()a;) -
+i (K(xr, xp)liy’ — 4y, s(0)] + Q—M—[ﬁf +1y, ﬁs(t)]+) :l “7n
@p
where
x; = hoy/ (kg T) (48)
xp = hop /(ke T (49)
1 Ix xf — 2mnxp
€l xo) = = (E N D= (2rm)2>) ' O

This equation is valid if the characteristic time 7, from which the integral over ¢ gives
negligible contribution is much smaller than the characteristic relaxation frequency estimated
here as £ /1 (see the last term in equation (47)) [11, 16]. With the relation (45), we are able
to estimate the time 7. Putting this relation in the expression (41) and integrating over the
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frequency w,, we get

2

ooa { ksT [+ [ “p
Kps(t) = —=—— dr’ ent’ 12
sO==2% L wpe T E ;w — @rnksT/R)?

h

The characteristic time . is determined by the frequency parameter wp of the bath of
oscillators system and by kp T /R. Thus, the validity criteria of the weak-coupling assumption
are

. 2mnkeT ,
x(wne"‘"”‘ - —nE—e‘(p"’"‘“m”) [&(=1), ps(®)]

/1 L keT/h and L/ € wp. (52

It is shown in appendix B that when the first criterion is verified, the coupling effect can
be neglected for the equilibrium density matrix operator. Equation (21) is then a good
approximation which is moreover a solution of (47) (see [16]).

@, attain mainly values around the mean angular velocity Qmean = (ksT/1)/? for the
equilibrium density matrix operator (21) {for ﬁ’s m~ B2 LT~ kT, @ ~ Qmean). We expect
that this does not change very much when we do not have equilibrium, This is true if the
deviation from the equilibrium is slight. This must be verified a posteriori by an explicit
evaluation of the solution of the master equation. According to the value of Q2gean, We have
two possible regimes.

In the first regime, Qmean has a value of the same magnitude as £ /1. Then, we can take
the two limits kg T/ — o0 and wp —> oo, which comespond to the classical Brownian
motion limit {157 in which the dypamic evolution of the bath is much faster than that of
the rotor. The master equation established from the classical Hamiltonian comresponding to
(2) has been found to give, when wp — co, the FPK equation [1,2,4,6, 12-15];

[i+ ws 9 +wﬁ;:3+cotﬁ( 2 —wawﬁ%) 19%0 ] W)

gt  sinf Jor I 98 oduwg

a kgT 8 3 kT 28
= B _ — —_ Wi 33
[awo,( T 3605,)—{_3&)5 (“’ﬁ+ i awﬁ)} @ (53)

where
¢

B== 54
; 54

The second limit regime takes place when
Qevenn > ¢/1. (55)

In this case, we can use a theorem by Davies [17,21,22] which states that when
(i) the spectrum of Hs is discrete; and
(i) it exists, § > 0, such that

[T

then, replacing HSB by AHSB, where A is a coupling parameter for all 7 and for all reduced
density matrix operator fs, one obtains

lim sup [ tra(e™fs @ pLY) — eI Aol = (57)
A-+OO<A.JI<‘E

Ztrs(pB & - G~ D]+ £V < +oo (56)
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where || ... || designates the trace norm and

1 +7
4a — - ifst P —:Esx ~
Kips = TETQO 7 ), de ! Ke™ gs. i . (38)
Both conditions (i) and (ii) are satisfied by our model. This theorem can be interpreted as
follows. When A is very small or equivalently, in terms of the physical parameters, when
(55) is satisfied, we can replace K by IC” in the weak-coupling master equation (26}. In the
applications, Rhis simpler to use than £ because of the commutation relation

lﬁsKIq = K:NICS (59)

which greatly simplifies the resolution of the newly-obtained master equation. In addition,
it is shown [17] that every initial state Sg preserves its positivity during its evolution and
approaches the canonical equilibrium distribution as t — oo, This replacement can also be
obtained by rewriting (26) in the interaction picture where g5(¢) is changed into

Ly = 74" ps(a) (60)

and by applying the Van Hove limit [18-21] to the resulting equation, that consists of
tending the coupling parameter A to zero keeping the product A% as a constant. This limit
is the mathematical analogue of the rotating wave approximation [11], used by physicists.

Let us notice that in the form (44) the imaginary part of K diverges in the limit wp — oo,
In the calculation of the electrical susceptibility we will see that the dwergence will disappear
in the two limit regimes,

3. Dielectric susceptibility derivation

The experimental dielectric behaviour of a system is often analysed by measuring the
polarization P(r). The steady-state response P(t) = P(w)e’ to an alternating field
E(t) = Ege'® with amplitude Ej is related to the susceptibility x () by

P(w) = x(w)Eo. (61)
In our model Hamiltonian, the polarization may be determined by calculating [9]
“+C0 i Ay ma -
P{w) = f di’ e tr(,u,zﬁze"”:‘ L%, Ey. 62)
0

This quantity is related to the polarization P,(f) resulting from the removal of the DC field
Ey(E=Egfort <Qand E=0fort> O}

+00
P(w) = P(0) — iw f dee™ ™t p(2). (63)
The after-effect function P,(z) is th?e ensemble average value of cos B:
Py(t) = w(peil, (1)) = trs(p cos BAs(6)) (64)
where Js(2) is the solution of the master equation subject to the initial condition:
Ps(t = 0) = pg* + (28, ) Ep. (65)

Qur aim is to calculate the dielectric susceptibility in the weak-coupling limit. For this
purpose, we rewrite the susceptibility in terms of the following functions:

!
Our () = 3 (L miBs (i . m)

m=—|
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_ Z*: [(1+m+1)(z-m+1)
- (21 = 1)(21 +3)

m=—{

! )
oua) = ) (mlip, , As ()L, m)

m==f
= 0yy41{2)
to get

Foo
Pa(t) = 6 ) (0141,40) + 01041 ()
1=0

1/2
] {, m|Bs(EM + 1, m)

(66)

(67)

In the weak-coupling limit, the oy .4 (z) are determined from the master equatlon Indeed
taking the product on the right of each side of the master equation (47) with o 1z and

taking the trace over the product, with the help of the identities

]
a4ty =8 Z——“” m){i, m|
m=—!
—1
@ - = }: —-——u 1L, m){t ~1,m|

m—-—!+[
'&-?‘ - &[} 0
a7 dy =0

! _
D mlagy - As()iF T M m) =

m=—[

1

2T3 1+1,042(2)
i -

D mldi - BsBL, fy )L, m) = T141,(8)

=]

1
20+ DE+3)

Z{l mld - fs)U L0, |0 m) =0
m=~{

!

2 mld - fs@ag i Il m) =

m==!

+ 1
TR ]01—1.!(5)

we get the closed system of equations for the 07,41(f) and o141 2():

a . {2 A of A, B
g = —={ | Ff——
[Bt 1w{+1]0‘r.!+r(f) I“: 2+ 1 aegt¢+D (2!-!—3 1L2,I+1)
E+ DA+ Bly)

2 Bl
+( +2) B]Gt.m(t) G D@3 Or41,0(£)
. P41
-+ DAL+ U+ Z)At+2]2[+30'1+1.r+2(?)

I+l
—(1 =& o)IB+ U+ 1)35+11m01—l,e(3)}

with
2

o %)
A1 = __D_ [1 + N{wy1) +1i (K(xa+1 xp) — ﬁi)
- wh + Wiy 2t9p

(68)

(69)

(70)
71

(72)

{73)

(74

(75)

(76}
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2

By = -2 [N(w:ﬂ) +i (x(xp,., )+ "”—“-)] o
o + wfyy Zwp '

and the initial conditions
T Eq expl =1 + DR/ (21kgT)] — expl—( + 1)( + )82/ (21 kg )

ot =0 =

3K* ool 4 1y expl—l (i + 1)i*/(21kaT)]
: (78}
These initial conditions allow the computation of the static polarization:
oo 7
PO)=p Y (ot =0)+ o1t =0)). (79)

=0
Two limit regimes are of particular interest in this model: the classical Brownian limit and
the rotating wave approximation limit,

3.1. The classical Brownian limit

In the classical Brownian limit [15, 171,  — 0 and the dynamics of the bath is much faster
than the dynamics of the rotator. The frequency %/J is much smaller than the average
angular velocity Smeaq Which in turn is much smaller than the typical oscillator frequency
oscillators wp. Mathematically, this amounts to taking the ratio limits

h Qmean

—- 0
I Cmean wp

— 0. (8%

Classically, the angular velocity is set as the continued variable

w; — (81)
or written in dimensionless form:
e .
= . 82
2T (82)

In order to have a non-zero 2 we must also impose the limit I — co. Moreover, sefting as
the new classical function

o1-1,(6) = Al (x, 1) (83)

and taking into account that in the classical Brownian regime finite difference becomes a
derivative as

TkpT (o1,141(2) — o1y 4(2)) (x,t)

A

| 7 BENFY 65

the evolution equation (76) becotnes in this limit

2
S i Omen/Ix Ulx, 1) = e 4 2x 41 Ulx, t)
ot dx2 dx
1

o U + UG, r))]. | ®5)

If we make the substitution

U =14/ [;‘Bre-‘ o1 (s £) + iQumean v 23 2%, £) (86)
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we recover the system (24) and (25) deduced by Kalmykov er al [12] and by the authors
6,13, 14]. The polarization is given by the Sack’s continued fraction [23]:

2E Pt
P@) =20~ — 87)
B ]wl+ Y 5
1 i’ + 14 T
24w + 4
. 4y
34w + %y
4+ iw + —m—
+ 1w +5+ia)’+~-)
where
TkpT
y = ;2 (88)
and
o = -1{3 (8%

3.2, Rotating wave approximation limit

In this case, the off-diagonal terms in (76) are neglected and the master equation becomes
a
[a ~ i{wry1 + Awpy1) + 1_'£+1:| o1+1() =0 (90)

where we define the frequency shifts:

wh

2 * (e, xp) + (@41 /20p)
7|2+ (H“l)( U+ 1
D i1

L k(X1 %) — (@1 /20)9)) o} &
, 553 3+ 5 (ke xr, xp) — (CL’I/ZCUD))2£+1

R (l+2)’-]

Awiy = -“E[

(K(xl+2= xp) + (wra/20p)) o1

wD +fy 2A+3
and the positive half-widths:

([ @f a1+ Nw) @ 2 (1+N(w1+1) N(wz+1))
=2 +1
fist I[a%+w} 2+ 1 +w§+w?+,( +1 2+ T 21
wh 2 V( z+2)jl
+—‘——( +2) = 0. (92)
D+mf+'2. 2!+3
For very high wp, we can take the limit
13y ?ICDD
— r— 93
wy - kT - 93)

in the previous expressions to obtain

i Z (2rny (2}, — xP)

I~ (xF + Quen)?)(xF,, + Qan)?)(xl, + (2wn)?)
_r2i+1 2
N {'(21+1)(41+4)

Ay =

[P (L 41/ Qe ) + W (1 — ix/ (2m))]
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DY b /) + 9 (= il /2
ST Y /@) + ¥ (1~ it/ Q)]
—~—U+—2)2———~[\11(1+ix JQm)) + ¥ (1 —ix, /(231-))}} (94)
(20 +3)(4l + 4) 2 b2
N o T+ Nlw) | Nlwgn) 2 N{ew2)
= [P 00 (S« ) 0 R 09
where
_dinT(w)
V) = — (96)

is the derivative of the logarithm of the factorial gamma function I'(x). Solving the
differential equation (90), the susceptibility becomes

x ()= +§ [ {wir + Awpp) + Doy —i{wp1 + Awryg) + Dip ]
i+ il + Aop) + T o — e + Awpgr) + Di

=0
ILL expl—I(l + DA/ (21ksT)] — expl—( + D + 2R/ 2Lk T)] ©7)
SETC Sl 4 1y expl=—'(’ 4+ D)2 /(21kn T] ‘
Figure 1 shows the real and imaginary parts of the reduced susceptibility
wo_ X@) L Ly :
Xes®) = O Xe.al®) — 17 (@) (98}
against the dimensionless frequency
Il ' -
D= — a9
5= (99)

for the values of dimensionless parameters ¢ /(f Qupean) = 0.001 and #%/(TksT) = 0.05 and
xp — ©0. The curves show the rotational lines caused by the important absorption near
the resonance frequencies wr. In figures 2 and 3, we have represented the evolution of
the reduced half-widths Iy and the frequency shifts Aey divided by B against the quantum
number ¢ for #2/(IkpT) = 0.05. The half-widths do not change apprecitably with I, while
the frequency shifts are negligible compared to the corresponding resonance frequencies.
The loss factor corresponding to the imaginary part is positive as a consequence of the
positivity of the T in (87).

4. Conclusions

From a pure quantamn Hamiltonian model, we analytically calculated the electrical
susceptibility. The effect of the interaction of the bath on the rotor has not been obtained
phenomenologically but as a logical deduction of the weak-coupling limit. Although this
model is a very simplified scheme, it provides 2 method for calculating the relaxation
frequency ¢ /7, the half-widths Iy and the frequency shifts Ay in terms of the physical
characteristics of the bath and of the jnteraction form between the bath and the rotor.

The quantum result (97) for the susceptibility is rigorous as it is based on the application
of a pure mathematical theorem by Davies. This theorem provides a method for obtaining a
well established master equation that corresponds in physics to the so-cailed rotatmg wave
approximation (RWA).

The assumptions (52) on the values of the parameters of the model are strong constraints
for the model. Indeed, in the first regime the time evolution of the rotor must be slow
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Figure 1. Normalized dispersion plats of the real and imaginary components, ;. (@) and
x4(®) of the complex susceptibility against the reduced frequency @ for A%/ (JksT) = 0.05
and B/ Qmean = 0.001.
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Figure 2. Plot of the half-widths [;/B against the quantum number { for #2/(FkpT) = 0.05.

enough compared to the time evolution of the thermal bath, while in the second regime the
half-widths and the frequency shifts must be much shorter than the transition frequencies.
Furthermore, it must be noted that the classical limit % - O is valid in (92) only when the
friction coefficient is zero, otherwise the half-widths would diverge. Thus, the Van Hove
limit is well adapted only in the quantem formulation of the model.

In a model, such as the ‘shish-kebab’ model [3, 6, 15], we expect that a similar weakly-
coupled master equation can be deduced, even if we have to deal with more complicated
forms of interaction coupling and thermal bath.
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Appendix A

The expression in equation (27) can be computed with the aid of the notation (29) and (30)
as follows: -

~ +°° ~ . R A oA ~ - & ) -~ ~
Kps(t) = trg [ f dt' ilgge™ s+ £ op SOl Hila ES'lpS(t):I
0

+oc . s s i 1
= trp f dt’ iﬁsge_(l‘csq'l’cs)t,— —
o’ B kg T tr{e—(Hs+Ha)/ (aT))

! 7 7 AR - - "
P f ds [[ Hsy, e"(ﬂts-f-HB}S/(ksT]]{c(1£s+l£33!’ Eé—lﬁs (t))e—(ﬁs_[.HB)G =s5}/{#aT) |
0

g~ {Hs+Hp)s /(e T) (c(ms“f'a)r'iglﬁs(f))[ﬁs& g (Hs+Hy)(1—)/ (ke T)]
e st fep (@ifs+Ha Sl 5o (r))]e—(ﬁsms)u—s)/(fcar)] } (100)

Using the property

L 1 -
[Ag, e~ Bstisitaly = _ 5 [ qor o~ Cstslss 16T o Ao+ Bl
ksT Jy
g~ (s+Ap)s(1—s) (T (101)

we get after handling

. +oo , A 1 !
Khalf) = —1tr dr' il % d
Ps(2) B { »/D f SB_kBT te(e—(Hs+Hp)/ kaT)) ~/(; °
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1 ] 1
X[/ ds’ e—(Hs+Hn)S’S/(k3T) __( —(lﬁs-!-lﬁn)f'HS )

kg T de/
xe—fﬁs+ﬂa)(1—5')-f/(k37')f;-l ~ (r)e'_(HS""E?B)(l-S)/(kBT)

e At B/ TY S 5 ) f ds’ e~ B+ Ba) (1~)/ G T)

v 1 4 —(e —(lﬂs+1£s)t’ ¥ )e—(Hs+HB)(1—S')(1—S)/(ksT)
kg7 dt’

+oo
+trB|: f dt' ifspe (o Hbel SO Sy icteilsr 5 (:))] (102)
1]

which allows the recovery of (28) after integrating the first term over #'.

Appendix B

To estimate the effect of the interaction on the equilibrium density matrix operator, we
compute trgfexp(—H /(45 T))] until the second order in the interaction. For that, we first
develop the exponential operator to get

o= (Hs+Ha+Hsn)[(ksT) oy o—(Hs+Fa)/GaT) _ f ds e~ Fs+Ha)(1—)/ (ke T) 2258 Hsp e—(Fs+Ha)s/(aT)
o keT

1 1
+ f ds f ds’s e s+ Hs)(1=5)/GsT) ZZSB Hsp o~ (Fs+Halss fikaT)

kBT
H A 3 .
188 -(Hs+HB)S(1 &)/ ks T} 38
kBT +0 (kBT) {103

After calculations similar to those performed to obtain (44), and after using the formulae
(38)~(40) and (68)—(71), the trace over the bath gives

trg[e—F/taTYH =2 o= Hs/®aT) gy 1o Aa/haT)y
pxss’ oo !
1+= | ds | ds's f
[ * f f x +x28" ZO: Z

' ’ 3
1755 4 (] 4+ 1)e— %15 Hsp
b4 0] . 104

l: 2A+1 ] ml+ (kBT) } (109

This last expression allows the verification that the second-order term in ﬁ;q is of order
{xqfh o~ th/(IkaT) and shows that in the limit where ¢/] & kpT/h the effect of the
interaction can be neglected.
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