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rigid rotator in a bath of oscillators: I. Electrical 
susceptibility derivation 
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BP 613-Porto-Novo, Republic of Benin 
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AbstracL We consider a model Hamiltonian describing a rotor as fixed and weakly interacting 
with a bath of oscillators. From the basic principles of statistical mechanics, we derive 
the corresponding master equation for the rotor densiry m u i x  operator. Two relevant limit 
regimes, imposed by the weakoupling assumptions, are then examined in detail. The hnt 
regime, corresponding to the classical Brownian limit, leads to the same electrical susceptibility 
formulae as deduced from the well known Fokker-Planck-Kramers equation for the rotational 
Brownian motion. The second regime appears as the Van Hove limit for the master equation 
in the interaction picture. Based on the application of a mathematical t h e "  by E B Davies, 
this limit provides an elegant Van Vleck-Weisskopf lineform for the electrical susceptibility, 
explicitly expressed for the model considered here. 

1. Introduction 

The study of the dielectric properties generated by the rotational motion of linear molecules 
in non-polar media is an active field of work [1-6]. A close analysis of the vast literature 
[7,8] concerning theoretical studies on the quantum rotational motion shows that there are 
fundamental difficulties in the understanding of the problem. The main difficulty is that 
there are various aspects of the relation between commonly used phenomenological models 
and microscopic dynamics that are not well understood. Moreover, existing theories based 
on model Hamiltonians have not been carried far enough to clearly establish their relation 
to phenomenological models. 

In order to clarify the problem, in this work we consider the quantum model 
Hamiltonians of a rigid fixed rotor interacting with a bath of harmonic oscillators. 

From the basic principles of statistical mechanics we establish the weakly-coupled 
master equation for the density matrix associated with the motion of the rotor. Some 
authors have tackled this problem using projection operator techniques 19-111. The rotor 
possesses a permanent dipole moment along its axis interacting with an external applied 
electric field. This model has already been treated by Lindenberg and West [2] in the 
classical case. Instead of using the master equation approach, they have established the 
Langevin equations for the rotational motion of the rotor. In the limit regime, where the 
random force created by the bath in the Langevin equations results from a white noise, 
they have obtained the Fokker-Planck-Kramers (FPK) equation [ I ,  2,4,6,12-141. Identical 
results have been recovered by the master equation approach with the effects of an applied 
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electrical field included [ 151. The white noise is a consequence of the fact that the dynamical 
evolution of the bath is infinitely faster than that of the rotor and so is a characteristic of 
the Brownian motion. 

In the full quantum treatment, the bath creates a quantum noise which no longer 
generates such an infinitely fast motion [Ill. The correlation time of the bath is of the same 
order of magnitude & the thermal correlation time rT = h/kBT @ is Planck’s constant, kg 
the Boltzmann constant and T the absolute temperature). The weak-coupling assumption 
imposes that this time must be much shorter than the typical relaxation time associated 
with the evolution of the rotor [ l l ,  161. This constraint restricts the validity of the master 
equation to two limit regimes. The first regime corresponds to the classical Brownian limit 
[17] discussed above. The second regime corresponds to the Van Hove limit [18-211 applied 
to the master equation, describing the density matrix in the interaction picture. In this case, 
we can apply a mathematical theorem by Davies which reduces the master equation in an 
analytically tractable form [17,21,221. 

The electrical susceptibility of the rotor can be calculated in the two limit regimes. In 
the classical Brownian limit, this has been done in previous papers 112-14,231. In the Van 
Hove limit, the susceptibility is given by the Van Vleck-Weisskopf lineform expression 
[8, 161, whose parameters are explicitly calculated from the model. 

The paper is organized as follows. Section 2 deals with the theoretical framework from 
which we establish the weak-coupling master equation. In section 3, we show how to derive 
the expression for the linear dielectric susceptibility for the two limit regimes. Section 4 
ends with the conclusions. 
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2. Theoretical framework 

Let us consider a symmetric rigid rotor, fixed at its centre and free to rotate about this centre. 
The rotor is in a bath of non-interacting harmonic oscillators that interact harmonically with 
either end of the rotor. The centres of mass of the bath are spatially fixed. The rotor 
possesses a permanent dipole moment susceptible to interact with an applied electric field. 
In the quantum treatment, the Hilbert space associated with this model is the tensorial 
product of the Hilbert space associated with the rotor system ‘Hs and that associated with 
the bath system ‘HB: 

31 = ‘ H S  @‘HB. (1) 

In this Hilbert space, the Hamiltonian operator associated with the model is written as [2] 

fiT = fi + f id t )  

H = Hs + &+ ~ S B  

(2) 

with 
A -  

(3) 

where the definitions are as follows. 
(a) The rotor system Hamiltonian is 

I is the moment of inertia about the principal axes and 2 are the components of the angular 
momentum operator. Its components can be expressed in terms of the azimuthal angle 01 
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and the polar angle g of the rotor, respectively referring to the fixed direction of an applied 
field as polar axis: 

A ‘( I ag aa a )  
a L, =: -sina- -cosacotg-- 

+ h (  L ag a@ a )  
a 

L, = 7 cosa- -sinacotp- 

h a  i, = Tz. 
(b) The Hamiltonian of a set of three-dimensional oscillators is 

ijv is the operator associated with the uth oscillator displacement from the equilibrium 
configuration, fi” the associated conjugated momentum operator and w, the frequency 
variable. The mass of the oscillators is taken to equal unity. In terms of the creation 
and annihilation operators I?:, &,, the operators 6” and f i v  can be written as 

with the commutation relations: 

[I?”, 2 3  = lS,,”. 

where 1 is the identity operator. 
(c) The Hamiltonian of the coupling between the bath ,and the rotor is 

c, is the coupling parameter between the oscillator U and one of the rotor ends. 

6 = (cos~s in~,s inors ing ,cosp)  (11) 

is the unit vector oriented along the given end. 
(d) The time-dependent Hamiltonian due to the applied electric field /?(I) is 

fi&) = $ ( t )  = -pLirE(t) = -pcosj?E(t) (12) 

where p is the dipole moment. The applied electric field is assumed to be along the z axis, 
with the unit vector operator component r i ,  [3,6,14,15]. 

Let us define 6 0 )  as the probability density matrix operator defined at time t in the 
Hilbert space, X = Xs @ XB. The normalization condition imposes the relation 

tr6(t) = trS@UBj(t) = 1 (13) 
where trg and trS denote the partial traces over a complete set of orthonormal functions in, 
respectively, 1-1~ and Xs. 

The Von-Neumann-Liouville equation for the density matrix operator is 
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where we used the Liouville operator's commutation relations 
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(15) 
i i 

TI 

By analogy, let us define 

iLfi(r) = -[I?, fi(t)1 i&(z)f i(r) = j;[EiE(r), 

iLsfi(t) = $&, fi(t)l (16) 
I 

iiBB(t) = -[&, f i  /?(t)] (17) 

(18) 
1 

i i s e i w  = j l [ l jSB,  m 1 .  

In the following we will consider the canonical ensemble. In this case, when E ( t )  = 0, the 
equilibrium solution of the Von-Neumann-Liouville equation is 

Our aim is to describe the dynamics of the rotor moving under the influence of the 
bath of oscillators. This is realized by deriving a generalized master equation 12,111 for the 
reduced rotator density matrix operator 

A( t )  = trB m- (20) 

Carrying out the trace over the states of the bath in (19), in the weak-coupling limit, we 
can neglect the term ~ ? S B  and deduce the corresponding reduced density matrix operator 

The conditions of validity of this approximation will be established later. 

on the density matrix operator can be written as 
To obtain the master equation, we define the projection operator f', the action of which 

TJ'B(t) = t r B  B(t) 0 j;q (22) 

where 

The corresponding complementary operator reads 

d . = l - f ' .  

Such projection operators, not depending on the interaction &B, are used to derive the 
master equation, when we impose the initial condition 

p ( t  = 0) = A ( r  = 0) 0 jiq (25) 

which also does not depend on the interaction operator &. When f?&) = 0, using the 
assumption (25), the master equation in the weak-coupling limit is found to be in the form 
[Z, 11,161: 
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where 

J%S(t) = WB [ dt, iLsBe-(i&+iia)t'. iLsBei'sr'&(t) .. 8 FEq]. (27) 

Let us recall here (see appendix A) that this result is identical to the more mathematically 
complicated form [9]: 

dt' i~sBe-6&+i&)i' iLSB e&"& (t )] , (28) 

and %('I are, respectively, the zeroth- and first-order term of the development in the 
interaction &, of % which, for any well defined operator A, is defined as 

5;' is the inverse operator of 5 s  defined as 

The derivation of (28) assumes the following interaction-dependent initial condition: 

;(t = 0) Z 2 @B(e-',&(t = 0) )  (31) 
and the use of different projection operators as the quantum analogue to the corresponding 
interaction-dependent classical projection operators [9,15]. 

The last term f& ( t )  in (26) can be handled by means of the following properties. 
(9 

e-(i&+&)ri = , - ~ C ~ ~ + H ~ ~ I ~ ~ ~ C $ + H ~ ) I  . (32) 
(ii) In the spherical harmonics basis 11, m). we can decompose: 

where the components of &: read 

I (1 +m)(l + m  - 1) "' 
( 1 -  l , m  - I /  

(21 + 1)(21- 1) 1 
(1 + m)( l+  m - 1) '1' 

( I -  l , m  - 11 
(21 + 1)(21 - 1) 1 
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and where 
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2; = (a:)'. (35) 

(iii) The evolution of the dynamical operator 0 resulting fiom the free Hamiltonian fis 
is periodic and given at time T by 

where 
hl 

W l  = - 
I (37) 

are the transition frequencies. 

is given at time T by 
(iv) The evolution of the dynamical operator 8. resulting from the free Hamiltonian fiB 

sin(w,t) 
&(r)  = e  qu = cos(w,~)@~ + - Pu . (38) 

0" 

(v) Using the statistical factor of BoseEinstein 

N(U)  = [eXp(hU/kBT) -I]-' (39) 

for the boson gas, we deduce 

kB(&:&~t&~4) = lv(wv)18u.u, 

trB(&vhv',$q) = @B(h:h>8iq) = 0. 
(40) 

Then using (lo), we carry out the partial trace over the bath. Furthermore, making an 
integration by parts over t', equation (27) becomes 

11 @I 
X &., (N(w,)  + +)[&: -a;, k( f ) l -  -Lh: +&;, fis(t)l+ . (42) 

The subscript p denotes the principal value. The last expression can be simplified if the 
various modes of the oscillators are very close together in frequency. The sum E, in the 
last expression is then replaced by an integral over the continuum: 

[ 20" 
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where the function g(o.) represents the spectral density of the oscillators. cy is replaced 
by the function c(w,). With these considerations defined, equation (26) becomes 

This expression follows an identical structure as the optical master equation derived in [ll]. 
Let us consider the particular case when 

t is a friction constant which does not depend on the frequency w, and w~ is a Debye 
frequency giving the upper limit of the oscillators frequencies. The situation of equation 
(45) takes place when c(wu) = c does not depend on w, and if the system of harmonic 
oscillators is assimilated to a gas of phonons, with wave numbers distributed uniformly 
inside a three-dimensional sphere whose radius is delimited by wD [24]. Therefore, before 
w, has reached W D ,  the spectral density has the quadratic dependence form 

where U, is the sound velocity and V the volume of the gas. Thus, with (45), we can cany 
out the integral in (44) by transforming it into a contour integral and by determining that the 
various poles inside the contour are &mi + io+, i o D  and 2ninksT/fi, where n is a strictly 
positive integer. We obtain the weakly-coupled master equation associated with the rotor: 

where 

This equation is valid if the characteristic time zc from which the integral over t’ gives 
negligible contribution is much smaller than the characteristic relaxation frequency estimated 
here as r / i  (see the last term in equation (47)) [ll, 161. With the relation (43,  we are able 
to estimate the time T ~ .  Putting this relation in the expression (41) and integrating over the 
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frequency 0". we get 

+ 
The characteristic time T~ is determined by the frequency parameter 00 of the bath of 
oscillators system and by kBT/h. Thus, the validity criteria of the weak-coupling assumption 
are 

< / I  << kBT/h and </I < 00. (52) 
It is shown in appendix B that when the first criterion is verified, the coupling effect can 
be neglected for the equilibrium density matrix operator. Equation (21) is then a good 
approximation which is moreover a solution of (47) (see [16]). 

wI attain mainly values around the mean angular velocity Qmm = (kBTf1)'f' for the 
equilibrium density matrix operator (211 (for & - hZl2/2 - kBT, or - Qmean). We expect 
that this does not change very much when we do not have equilibrium. This is true if the 
deviation from the equilibrium is slight. This must be verified a posteriori by an explicit 
evaluation of the solution of the master equation. According to the value of Q,,, we have 
two possible regimes. 

In the first regime, Q,,, has a value of the same magnitude as < / I .  Then, we can take 
the two limits kBT/h --z 00 and OD --z 00, which correspond to the classical Brownian 
motion limit [15] in which the dynamic evolution of the bath is much faster than that of 
the rotor. The master equation established from the classical Hamiltonian corresponding to 
(2) has been found to give, when WO + 00, the FPK equation [1,2,4,6,12-151: 

] W @ )  
a @ama a 1 I avE(t) ag am,, a 

a a a 
+w@-+cotp w , - - o m  - [ -+-- a t  sing aa ab ( 'a:@ 

where 
5 B = - .  
I 

The second limit regime takes place when 

Q" > < / I .  
In this case, we can use: theorem by Davies [17,21,22] which states that when 

(i) the spectrum of Hs is discrete; and 
(ii) it exists, 8 =- 0, such that 

(54) 

(55) 

then, replacing & by A&B, where A is a coupling parameter for all r and for all reduced 
density matrix operator &, one obtains 
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where I] . . . I] designates the trace norm and 

Both conditions (i) and (ii) are satisfied by our model. This theorem can be interpreted as 
follows. When A is very small cr equivalently, in terms of the physical parameters, when 
(55) is satisfied, we can replace K: by kb in the weak-coupling master equation (26). In the 
applications, kb is simpler to use than ?? because of the commutation relation 

iLSf? = Rbi& (59) 
which greatly simplifies the resolution of the newly-obtained master equation. In addition, 
it is shown [17] that every initial state 6s preserves its positivity during its evolution and 
approaches the canonical equilibrium distribution as t + 00. This replacement can also be 
obtained by rewriting (26) in the interaction picture where ,&(t) is changed into 

fiL(t) = e-iest6s(t) (60) 
and by applying the Van Hove limit [18-21] to the resulting equation, that consists of 
tending the coupling parameter A to zero keeping the product 1% as a constant. This limit 
is the mathematical analogue of the rotating wave approxiFation [ll],  used by physicists. 

Let us notice that in the form (44) the imaginary part of K diverges in the limit wg + W. 
In the calculation of the electrical susceptibility we will see that the divergence will disappear 
in the two limit regimes. 

3. Dielectric susceptibility derivation 

The experimental dielectric behaviour of a system is often analysed by measuring the 
polarization P(t). The steady-state response P(t) = P(o)eio' to an alternating field 
E @ )  = Eoeior with amplitude Eo is related to the susceptibility x(o) by 

P ( 0 )  = x(w)Eo. (61) 
In our model Hamiltonian, the polarization may be determined by calculating [9] 

(62) dt, e-iwr' e(w~ize-i2t'. ~fXi&)Eo. - .. b+m P(0) = 

This quantity is related to the polarization Pa(t) resulting from the removal of the DC field 
EO ( E  = EO for t c 0 and E = 0 for t 3) 0): 

+m 
P(w) = P(0)  - i m i  dte-iw'P,(t). (63 

The after-effect function P&) is the ensemble average value of cosg: 

= W & B ( t ) )  = trs(wcosBPs(t)) (64) 

(65) 
Our aim is to calculate the dielectric susceptibility in the weak-coupling limit. For this 
purpose, we rewrite the susceptibility in terms of the following functions: 

where ,&(t) is the solution of the master equation subject to the initial condition: 

A ( t  = 0) =A' + t r ~ ( 5 Q p E o .  



6354 P Navez and M N Hounkonnou 

+a 
Pdf)  = IC ~ ( o i + l . I ( ~ )  -t ~ l , I + l ( O ) .  (67) 

In the weak-coupling limit, the UI,I+I ( r )  are determined from the master equation. Indeed, 
taking the product on the right of each side of the master equation (47) with CkjZ and 
taking the trace over the product, with the help of the identities 

1=0 

1 
I1 - 1, m)(l  - 1, ml 

m=-1+1 
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and the initial conditions 

eXp[-f(l+ 1)h2/(21k~T)1 - eXp[-(f f +2)h2/(2!kBT)] 
C : 3 2 1 '  + 1) exp[-l'(lr + l)h2/(21k,T)] q f + l ( f  = 0) = - 

3h2 

(78) 

These initial conditions allow the computation of the static polarization: 

P(0)  = I I ~ ( ~ l . l . l + l ( t = 0 ) + ~ l + l . l ( t = 0 ) ) .  (79) 
/=a 

n o  limit regimes are of pmicular interest in this model: the classical Brownian limit and 
the rotating wave approximation limit. 

3.1. The classical Brownian limit 

In the classical Brownian limit [15,17], h + 0 and the dynamics of the bath is much faster 
than the dynamics of the rotator. The frequency h / I  is much smaller than the average 
angular velocity Qm,, which in turn is much smaller than the typical oscillator frequency 
oscillators wg. Mathematically, this amounts to taking the ratio limits 

Classically, the angular velocity is set as the continued variable 

w1 -t 52 

or written in dimensionless form: 
I 522 x = -  

2ksT' 
In order to have a non-zero 52 we must also impose the limit I + w. Moreover, setting as 
the new classical function 

UI-l.f(O + %U(-& t )  (83) 

and taking into account that in the classical Brownian regime finite difference becomes a 
derivative as 

(84) 
IkBT(W+l(t)  - Oi-i,&)) + h% 

h*f ax 
the evolution equation (76) becomes in this limit 

If we make the substitution 
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we recover the system (24) and (25) deduced by Kalmykov et a1 [I21 and by the authors 
[6,13,14]. The polarization is given by :be Sack's continued fraction [23]: 
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io' 
(87) 

p2Eo 
2Y 

P(0) = -(l - 
3 k ~ T  io/+ 

2Y 1+io '+ 
4Y 

4Y 
2+iw'+ 

6~ 
3 + io' + 

4 +io' + 5 +io' + . . .) 
where 

IkBT 
y=- 

5' 
and 

I w =-. c 
3.2. Rotating wave approximation limit 

In this case, the off-diagonal terms in (76) are neglected and the master equation becomes 

[ $ - i(w+l+ A ~ I + ~ )  + rI+l w+l(t)  = o I (90) 

where we define the frequency shifts: 

and the positive half-widths: 

For very high W D ,  we can take the limit 

in the previous expressions to obtain 
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where 
d lnr (u)  

du 
W(u) = 

is the derivative of the logarithm of the factorial gamma function r(u). Solving the 
differential equation (go), the susceptibility becomes 

. (97) 

1 -i(or+l+ Aw+d + rltl 
10 - i(wl+l + AWI+I) + rl+l 

+ .  i(w+l+ AW+I) + rl+l 
io + i(w+l + Ao[+l) + rl+l 

rp* exp[-l(l+ i )h2/ (2rkB~) i  - exp[-(l+ 1)(1 + z)h2/(21kg)] 
3h2 ~ CzO(21’  + I )  exp[-~(~’  + 1)h2/(2rkBT)] 

Figure 1 shows the real and imaginary parts of the reduced susceptibility 

+m 

K(@) = 1 [. 
X- 

against the dimensionless frequency 

- lo 
U = -  

R 
for the values of dimensionless parameters (/(ISma,,) = 0.001 and h Z / ( Z k ~ T )  = 0.05 and 
XD -+ 00. The curves show the rotational lines caused by the important absorption near 
the resonance frequencies W I .  In figures 2 and 3, we have represented the evolution of 
the reduced half-widths rl and the frequency shifts Aor divided by B against the quantum 
number 1 for h ’ / ( l k ~ T )  = 0.05. The half-widths do not change appreciably with I ,  while 
the frequency shifts are negligible compared to the corresponding resonance frequencies. 
The loss factor corresponding to the imaginary part is positive as a consequence of the 
positivity of the rf in (97). 

4. Conclusions 

From a pure quantum Hamiltonian model, we analytically calculated the electrical 
susceptibility. The effect of the interaction of the bath on the rotor has not been obtained 
phenomenologically but as a logical deduction of the weakcoupling limit. Although this 
model is a very simplified scheme, it provides a method for calculating the relaxation 
frequency (/I, the half-widths rI and the frequency shifts Awl in terms of the physical 
characteristics of the bath and of the interaction form between the bath and the rotor. 

The quantum result (97) for the susceptibility is rigorous as it is based on the application 
of a pure mathematical theorem by Davies. This theorem provides a method for obtaining a 
well established master equation that corresponds in physics to the so-called rotating wave 
approximation (RWA). 

The assumptions (52) on the values of the parameters of the model are strong constraints 
for the model. Indeed, in the first regime the time evolution of the rotor must be slow 
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Fiyre 1. Normalized dispersion plots of the real and imaginary components, &(G) and 
x&,(G) of the complex susceptibility against the reduced frequency G for ?iz/(IkxT) = 0.05 
and BIO,., = 0.001. 

l " " l " " l " ~ ' 1  

0 5 10 15 1 20 

Fiyre 2. Plot of the half-widths r,/B against the quantum number 1 for Zz/(Ik,T)  = 0.05. 

enough compared to the time evolution of the thermal bath, while in the second regime the 
half-widths and the frequency shifts must be much shorter than the transition frequencies. 
Furthermore, it must be noted that the classical l i t  R + 0 is valid in (92) only when the 
friction coefficient is zero, otherwise the half-widths would diverge. Thus, the Van Hove 
limit is well adapted only in the quantum formulation of the model. 

In a model, such as the 'shish-kebab' model [3,6,15], we expect that a similar weakly- 
coupled master equation can be deduced, even if we have to deal with more complicated 
forms of interaction coupling and thermal bath. 
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0 5 10 15 1 20 

Figure 3. Plot of the frequency shifts A w / B  against the quantum number 1 for h 2 / ( l k e T )  = 
0.05. 
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Appendix A 

The expression in equation (27) can be computed with the aid of the notation (29) and (30) 
as follows: 

Using the property 
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which allows the recovery of (28) after integrating the first term over t'. 

Appendix B 

To estimate the effect of the interaction on the equilibrium density matrix operator, we 
compute trB[exp(-ri/(kB~))l until the second order in the interaction. For that, we first 
develop the exponential operator to get 

e-Cfis+&+$~)/(k~T) g e-(f?+fid/(ksT) ds e-(fis+&)(l-S)/(~T) ?e-(fis+fi~)S/(k~T) fi 
kB T 

After calculations similar to those performed to obtain (44), and after using the formulae 
(38)-(40) and (68)-(71), the trace over the bath gives 
eB[e-fi/(k~T)] g e-fis/(ksT) trB[e-k~/(ksT)~ 

This last expression allows the verification that the second-order term in ,@ is of order 
(xf/h - (h/(IkBT) and shows that in the limit where (11 << kBT/h the effect of the 
interaction can be neglected. 
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